

Article The Inhibitory Effect of KerraTM, KSTM, and MinozaTM on Human Papillomavirus Infection and Cervical Cancer

Kiattawee Choowongkomon ^{1,†}, Khuanjarat Choengpanya ^{2,†}, Chamsai Pientong ^{3,4}, Tipaya Ekalaksananan ^{3,4}, Sulak Talawat ¹, Pussadee Srathong ⁵ and Jureeporn Chuerduangphui ^{6,*}

- ¹ Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; kiattawee.c@ku.th (K.C.); fscislt@ku.ac.th (S.T.)
- Program in Basic Science, Maejo University-Phrae Campus, Phrae 54140, Thailand; khuanjarat@mju.ac.th
 Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; chapie@kku.ac.th (C.P.); tipeka@kku.ac.th (T.E.)
- ⁴ HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
- ⁵ Faculty of Nursing, Praboromarajchanok Institute, Nonthaburi 11000, Thailand; pussadee10@yahoo.com
- ⁶ Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- * Correspondence: fscijoc@ku.ac.th; Tel.: +66-862182348
- ⁺ These authors contributed equally to this work.

Abstract: Background and Objectives: Cervical cancer is one of the most common types of frequently found cancers in Thailand. One of the causative agents is the infection of the high-risk human papillomavirus (HPV) type 16 and 18. Traditional medicines are rich sources of bioactive compounds which are a valuable source for the development of novel cancer therapies. In this study, the therapeutic effects of 3 traditional medicines, KerraTM, KSTM, and MinozaTM, were studied on HeLa and CaSki cells. Materials and Methods: The effects of KerraTM, KSTM, and MinozaTM on cancer cells were evaluated through cytotoxicity and cell death assays. The infection assay using HPV-16 pseudovirus was also carried out. Results: All traditional medicines efficiently suppressed cell growths of HeLa and CaSki, with KerraTM being the most potent anticancer agent followed by KSTM and MinozaTM. KerraTM at 158 µg/mL and 261 µg/mL significantly increases the percentage inhibition of the HPV-16 pseudovirus infection in a pre-attachment step in a dose-dependent manner, while KSTM at 261 µg/mL efficiently inhibited viral infection in both pre-attachment and adsorption steps. However, KerraTM, KSTM, and MinozaTM at subtoxic concentrations could not reduce the viral E6 mRNA expressions of HPV-16 and HPV-18. Cell death assay by acridine orange/ethidium bromide showed that KerraTM increased population of dead cells in dose-dependent manner in both CaSki and HeLa. The percentage of secondary necrosis in KerraTM-treated CaSki was higher than that of HeLa cells, while the percentage of late apoptotic cells in HeLa was higher than that of CaSki, indicating that HeLa was more susceptible to KerraTM than CaSki. For KSTM and MinozaTM, these extracts at 250 µg/mL promoted autophagy over cell death. At 500 µg/mL, the percentage of dead cells in KerraTM was higher than that of KSTM and MinozaTM. Conclusions: KerraTM is a potent traditional medicine for promoting cancer cell death. KerraTM is possibly useful in the prevention and treatment of cervical cancer. Further investigation will be carried out to gain a better understanding of the biochemical mechanism and the pharmacological activity underlying this effect.

Keywords: herbal medicines; human papillomavirus; HeLa; CaSki; cervical cancer

1. Introduction

Cancer is a major public-health burden worldwide. The number of cancer patients are increasing day by day. Cancer cells are the body's cells that grow uncontrollably and spread to other parts of the body, leading to death. In Thailand, cervical cancer is the second most frequent type of cancer [1]. The cause of cervical carcinoma is infection with high-risk strains of human papillomavirus (HPV). HPV includes many subtypes. Especially, HPV-16

Citation: Choowongkomon, K.; Choengpanya, K.; Pientong, C.; Ekalaksananan, T.; Talawat, S.; Srathong, P.; Chuerduangphui, J. The Inhibitory Effect of KerraTM, KSTM, and MinozaTM on Human Papillomavirus Infection and Cervical Cancer. *Medicina* **2023**, *59*, 2169. https://doi.org/10.3390/ medicina59122169

Academic Editor: Paolo Zola

Received: 15 November 2023 Revised: 7 December 2023 Accepted: 11 December 2023 Published: 14 December 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). and HPV-18 are the most common subtypes in cervical cancer which can be transmitted sexually [2]. Approximately 80–90% of people infected with HPV will be able to eliminate the infection by their own immunity. However, if the body's immunity fails to get rid of the HPV infection that occurs over a period of 5–15 years, abnormal changes in the tissue around the cervix can occur and eventually becomes cervical cancer [3].

HPV vaccines are highly effective in the prevention of cervical cancer but have not been widely administered, particularly in low-income and middle-income countries where the number of women who have received a vaccination is <30% [4,5]. Chemotherapeutic drugs, in combination with radiation and surgery used for the treatment of cervical cancer, cause an adverse effect in patients [6]. To minimize the adverse effects of cancer therapy, various natural products have been used to reduce the side effects of these therapies [7]. Currently, plant-derived bioactive compounds have been developed for alternative cancer treatment. They contain diverse active herbal ingredients which have become safe and effective to combine with conventional cancer treatments. For example, in vitro and in vivo studies have shown that the compounds found in *Citrus aurantifolia* (Christm.) Swingle has anticancer activity. Diverse components suspected to have anticancer activity are found in citruses, such as limonoids, flavonoids, essential oils, coumarins, vitamins, and fatty acids [8]. Curcumin and standardized extracts of cultured *Lentinula edodes* mycelia were applied in clinical trials [9,10]. In addition, the prevention of cervical carcinogenesis by a new functional food and food supplement needs to be explored.

As traditional medicine, the effect of KerraTM on colon cancer has been studied [11]. KerraTM is an herbal medicine that was developed from the ancient Thai scripture named Tak-Ka-Si-La Scripture that was used as traditional medicine for antipyretics. Kerra[™] contains nine medicinal plants, namely Pterocarpus santalinus L.f., Mansonia gagei J.R.Drumm. ex Prai., Schumannianthus dichotomus (Roxb.) Gagnep., Momordica cochinchinensis (Lour.) Spreng, Citrus aurantifolia (Christm.) Swingle, Combretum quadrangutare Kurz, Tiliacora triandra (Colebr.) Diels, Tinospora crispa (L.) Miers ex Hook.f. and Thoms, and Dregea volubilis (l.f.) Hook.f. [12]. Each of these medicinal plants was mentioned in the scripture as having significant potential in cancer therapeutics [13–17]. KSTM is another Thai herbal formulation based on the ancient medical knowledge of the four etiologies of disease which consist of solid, fluid, energy, and gas components. KSTM products are abundant in phytochemical components that consists of a total of twenty plant components, namely Piper retrofractum Vahl (fruit), Zingiber officinale Roscoe, Piper sarmentosum Roxb., Piper interruptum Opiz, Plumbago indica L., Mallotus repandus (Willd.) Mull. Arg., Anaxagorea luzonensis A. Gray (wood), Derris scandens (Roxb.) Benth, Piper nigrum L. (climber), Ficus foveolata Wall., Boesenbergia rotunda (L.) Mansf., Senna garrettiana (Craib), H.S.Irwin and Barneby, Zingiber cassumunar Roxb., Cinnamomum camphora (L.) J.Presl., Myristica fragrans Houtt., Syzygium aromaticum (L.) Merr. and L.M. Perry. (flower), Acorus calamus L., Zingiber zerumbet (L.), Amomum cardamomum L. (seed), and Piper nigrum L. (seed). Each of these medicinal plants in KSTM exhibits pharmacological properties through various mechanisms. These effects collectively address the prevalent pathogenesis of diseases, alleviate symptoms, and potentially offer medicinal treatment benefits. For example, Z. officinale Roscoe or ginger has anti-inflammatories that exhibit pharmacological characteristics similar to those of non-steroidal anti-inflammatory medicines (NSAIDs) [18,19]. Several bioactive components were identified in *M. repandus*, with a particular emphasis on triterpenoids that have been previously documented for their various pharmacological effects, such as anti-inflammatory and anticancer activities [20]. A. luzonensis has been widely utilized in Thai traditional medicine for its purported health-promoting properties. It has diverse pharmacological properties, such as antipyretic, stomachic, blood tonic, antioxidant, antihistamine, and antihypertensive properties, along with anti-tyrosinase activity, vasorelaxant impact, and efficacy in treating muscle pain [21]. D. scandens is extensively recognized by several vernacular names such "Thao-wan-priang" in Thailand. The findings show that its chemicals have potential for the purposes of cancer prevention and therapy [22]. Thus, these herbal constituents of KSTM exhibit synergistic pharmacological activities, including anti-inflammatory, antibacterial, antioxidative, and anticancer properties.

MinozaTM is another Thai traditional medicine that contains various herbal constituents. It consists of six plant components, namely *Murdannia loriformis* (Hassk.) R.S. and Kammathy, *Smilax corbularia* Kunth., *Phlogacanthus sirindhorniae* (K.Larsen) Mackinder and R. Clark, *Parinari anamensis* Hance., *Aloe vera* (L.) Burm. F., and *Glycosmis pentaphylla* (Retz.) DC. Each of these components displays distinct characteristics and exhibits pharmacological effects which are utilized for the traditional treatment of detoxification, laxative, antipyretics, sore throat reducer, aphthous ulcer reducer and anticancer. The chemical constituents of these plants comprise of phenols, flavonoids, tannins, alkaloids, and steroids, and they have diverse pharmacological properties such as antioxidants, anti-inflammatories, enhanced immunity, and anticancer effects via several mechanisms including apoptosis, free-radical scavenging, and the prevention of mutation. [23–29]. For instance, *S. corbularia* Kunth. is rich in flavonoids and saponins, which have effective anti-inflammatory properties [30,31]. The bioactive ingredients of *Glycosmis pentaphylla* (Retz.) DC. have many pharmacological effects including anti-inflammatory, antibacterial, and anticancer properties [32–35].

The natural mechanism of programmed cell death known as apoptosis is gaining more attention as a target for cancer therapy [36]. The apoptotic pathway is inhibited through several mechanisms, such as overexpression of anti-apoptotic proteins and underexpression of pro-apoptotic proteins that cause mutations and eventually lead to cancer [36]. Plant-derived compounds exhibiting cancer activity through activating the apoptotic pathway have been studied recently [10,11,15,17]. For instance, convincing evidence for the ability of the KerraTM extract showed that it can activate apoptosis pathway in HCT116 colon-cancer cells, demonstrating their potential as therapeutic agents in this cancer treatment. The extract's efficacy was demonstrated by its dose-dependent inhibitory effect, induction of apoptotic activity, modulation of key proteins involved in cell death, and proliferation pathways [11]. For KSTM and MinozaTM, the anticancer properties have not been studied yet. Therefore, this study aims to investigate the inhibitory effect of KerraTM, KSTM, and MinozaTM on HPV infections, growth of cervical cancer cells, and their molecular mechanism.

2. Materials and Methods

2.1. Cell Cultures

CaSki (HPV-16-positive cervical cancer cell) and HeLa (HPV-18-positive cervical cancer cell) were kindly provided by Prof. Tohru Kiyono (National Cancer Center Research Institute, Japan). A human embryonic kidney 293FT and Vero cells were purchased from Invitrogen (Carlsbad, CA, USA). The cells were cultured in Dulbecco's Modified Eagle Medium (DMEM; Gibco, NY, USA) containing 10% fetal bovine serum (FBS) and antibiotics (40 μ g/mL gentamicin, 2.5 μ g/mL amphotericin B, 100 μ g/mL streptomycin, and 100 unit/mL penicillin G). The cell culture was incubated in a humidified atmosphere containing 5% CO₂ at 37 °C.

2.2. Herbal Extraction and Cytotoxicity Assay

KerraTM, KSTM, and MinozaTM were extracted using 99.5% ethanol. Briefly, 100 g each of KerraTM, KSTM, and MinozaTM were mixed with 200 mL of 99.5% ethanol. The mixture was incubated in a shaker at 150 rpm overnight. Then, the extract was filtrated through Whatman no. 1 filter paper and centrifuged at 12,000 rpm at 4 °C for 10 min to remove the precipitate. The ethanol solvent was removed via rotary evaporation at 50 °C. After that, the crude extract was lyophilized. The powder was kept at -20 °C until used.

Vero cells, 293FT, CaSki, or HeLa cell lines at a density of 10,000 cells per well were set up in 96-well plates and incubated for 24 h. The cells were treated with various concentrations of extracts and incubated for 24, 48, 72, and 96 h. Ten microliters of MTT reagent (5 mg/min) were added into the well and continuously incubated for 4 h. A formazan pellet was dissolved in dimethyl sulfoxide (DMSO). The absorbance was measured

at 540 nanometers using a spectrophotometer (Multiskan GO, Thermo Fisher Scientific, Vantaa, Finland). The experiments were performed in a triplicate-independent manner.

2.3. Anti-HPV-16 Pseudovirus Infection Assay

2.3.1. Production of HPV-16 Pseudovirus

HPV-16 pseudovirus was generated in 293FT co-transfected with p16sheLL (containing HPV-16 L1 and L2 genes) and pfwB (a reporter plasmid) which was kindly provided by John T. Schiller (Laboratory of Cellular Oncology, Bethesda, MD, USA) using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). The co-transfected cells were lysed with a lysis buffer containing 0.5% Brij 58 (Sigma-Aldrich, St. Louis, MO, USA), 0.2% RNase A (bovine pancreas, Sigma Chemical Company, St. Louis, MO, USA), and 9.5 mM MgCl₂ in PBS after 48 h post-transfection. Concentrated pseudovirus was serially diluted to determine its titer by measuring the total and green-fluorescent cells in 293FT cells under a microscope (Olympus BX51, Olympus, Tokyo, Japan).

2.3.2. Pre-Attachment Step

HPV-16 pseudovirus at the multiplicity of infection (MOI) 0.05 was pre-incubated with each extract of KerraTM, KSTM, and MinozaTM for 1 h at 37 °C. The mixture then was added to the 293FT cells and incubated for 4 h at 37 °C. After removing the mixture, the cells were maintained in a complete medium for 48 h. The total and green-fluorescent cells were observed and imaged under a microscope (Olympus BX51, Olympus, Tokyo, Japan). The percentage of inhibition was calculated by subtracting the percentage of infected cells of the treated and control (DMSO) groups.

2.3.3. Adsorption Step

The HPV-16 pseudovirus at the MOI 0.05 was incubated with 293FT cells for 2 h at 20 °C. After removal of the pseudovirus, each extract of KerraTM, KSTM, and MinozaTM was transferred to 293FT and incubated at 37 °C for 48 h. The total and green-fluorescent cells were observed imaged under a microscope (Olympus BX51, Olympus, Tokyo, Japan). The percentage of inhibition was calculated by subtracting the percentage of infected cells of the treated and control (DMSO) groups.

2.3.4. RNA

Cervical cancer cells at a density of 60,000 cells per well were loaded into a 24-well plate. Cells were maintained in a complete medium for 24 h, then each extracts at subtoxic concentrations (40 μ g/mL for KerraTM and 120 μ g/mL for KerraTM, KSTM, and MinozaTM) was mixed with the cells for 48 h. After harvesting, the cells were subjected to Trizol reagent (Invitrogen, Carlsbad, CA, USA), and subsequently chloroform. The upper and lower phase were separated by centrifugation and aliquoted into a new tube. The upper one was mixed with isopropanol to precipitate RNA. The RNA pellet was dissolved in nuclease-free water and kept at -80 °C.

2.3.5. HPV-16/18 E6 mRNA Expression

Total RNA was used as a template for cDNA synthesis using Revert Aid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA) with an oligo dT primer. Diluted cDNA was subjected to SYBR Green (Bio-Rad, Hercules, CA, USA) and a specific primer to determine the HPV-16 E6 and HPV-18 E6 gene expression. The amplification was conducted in an Eco48 real-time qPCR system (PCRmax, Staffordshire, UK).

2.4. Cell Death Assay by Acridine Orange/Ethidium Bromide

CaSki and HeLa at a density of 60,000 cells were seeded into each well of a 24-well plate and maintained in a complete medium for 24 h. KerraTM, KSTM, and MinozaTM at concentrations of 250 and 500 μ g/mL were mixed with the cells in each well and continuously incubated for 48 h. After harvesting, the cells were stained with each 100 μ g/mL of

acridine orange and ethidium bromide (AO/EB) (Sigma-Aldrich, St. Louis, MO, USA). The cell morphology was observed under fluorescent microscopy (Olympus BX51, Olympus Co., Ltd., Tokyo, Japan), and distinguished according to Supplementary Figure S1.

3. Results

3.1. The Effect of KerraTM, KSTM, and MinozaTM Extracts on Cytotoxicity In Vero Cells

The cytotoxic activity study of KerraTM, KSTM, and MinozaTM on Vero cells at several concentrations ranging from 3.91–500 μ g/mL revealed that KerraTM and MinozaTM showed low cytotoxicity against Vero cells with CC50 values higher than 500 μ g/mL, respectively (Supplementary Figure S2A,B). KSTM was slightly cytotoxic to Vero cells with an CC50 value of 363.3 μ g/mL (Supplementary Figure S2C). From these results, it could be said that KerraTM, KSTM, and MinozaTM had low cytotoxic effects on Vero cells.

3.2. The Effect of KerraTM, KSTM, and MinozaTM Extracts on Cytotoxicity in 293FT, CaSki and HeLa

KerraTM showed the highest efficacy in inhibiting the growth of CaSki and HeLa cells, followed by KSTM and MinozaTM in a dose- and time-dependent manner (Table 1). Similar to cancerous cell lines, KerraTM also showed the highest cytotoxicity in 293FT (Table 1).

Extract	Incubation Time (Hours)	Cytotoxic Concentration (mg/mL) of 293FT	
		CC20	CC50
Kerra TM	48	0.15 ± 0.01	0.26 ± 0.04
KS TM	48	0.41 ± 0.18	1.91 ± 0.68
Minoza TM	48	1.97 ± 0.16	5.20 ± 0.04
Extract	Incubation Time (Hours)	CC50 (mg/mL)	
		CaSki	HeLa
Kerra TM	24	0.33 ± 0.12	0.16 ± 0.08
	48	0.21 ± 0.02	0.12 ± 0.07
	72	0.11 ± 0.03	0.08 ± 0.03
	96	0.09 ± 0.01	0.07 ± 0.02
KS TM	24	>2	>2
	48	1.82 ± 0.05	0.62 ± 0.18
	72	0.72 ± 0.14	0.58 ± 0.18
	96	0.71 ± 0.32	0.31 ± 0.19
Minoza TM	24	>2	>2
	48	1.19 ± 0.15	1.17 ± 0.14
	72	0.96 ± 0.14	0.60 ± 0.07
	96	0.93 ± 0.08	0.33 ± 0.11

Table 1. The cytotoxic concentration of 293FT, KerraTM, KSTM, and MinozaTM.

Note: The data are expressed in mean \pm standard deviation.

3.3. The Effect of KerraTM, KSTM, and MinozaTM Extracts on Anti-HPV-16 Pseudovirus Infection

From Table 1, the KerraTM extract most effectively suppressed the cell viability of CaSki and HeLa. Therefore, the CC20 (158 μ g/mL) and CC50 (261 μ g/mL) of the KerraTM extract were used to assess the anti-HPV-16 pseudovirus infection in 293FT cells and to compare with KSTM and MinozaTM. The result showed that KerraTM significantly increased the percentage inhibition of HPV-16 pseudovirus infection in the pre-attachment step in a dose-dependent manner, with CC20 and CC50 values of 80.15 ± 5.56 and 100 ± 0.00, respectively (Figure 1A). Simultaneously, KerraTM showed the trend of elevating percentage inhibition in the adsorption step (Figure 1B). To compare the effect of KerraTM, KSTM, and MinozaTM on anti-HPV-16 pseudovirus infections, the concentration of KSTM and MinozaTM was 261 μ g/mL, similar to KerraTM at CC50. Interestingly, KSTM showed the highest inhibition of viral infection in the pre-attachment and adsorption steps with percentage inhibition values of 100 ± 0.00 and 82.94 ± 3.28, respectively.

Figure 1. Effect of KerraTM, KSTM, and MinozaTM on anti-HPV-16 pseudovirus infection assay. The extract of KerraTM, KSTM, and MinozaTM were assessed on anti-HPV-16-pseudovirus infections in the pre-attachment step (**A**) and adsorption step (**B**). The symbols ** and *** were denoted as the significant difference ($p \le 0.01$ and 0.001, respectively).

3.4. KerraTM, KSTM, and MinozaTM Could Not Suppress Viral Oncogene at Subtoxic Concentrations

KerraTM, KSTM, and MinozaTM at subtoxic concentrations (40 µg/mL and 120 µg/mL: \leq CC50) were used to study their effects on anti-viral oncogene expression. CaSki and HeLa treated with each of the three extracts could not reduce the viral oncogene E6 mRNA expression (Figure 2). Notably, the effects of the increased concentration of these extracts on the viral oncogene E6 mRNA expression need to be further investigated.

Figure 2. HPV-16 E6 and HPV-18 E6 mRNA expression in KerraTM, KSTM, and MinozaTM treatment in CaSki and HeLa. Either KerraTM, KSTM, or MinozaTM at 40 and 120 μ g/mL was mixed with CaSki and HeLa cells for 48 h. The expression levels of HPV-16 E6 and HPV-18 E6 mRNAs were analyzed using cycle thresholds to calculate the fold change expression compared with DMSO (control).

3.5. KerraTM-, KSTM-, MinozaTM-Promoted Cell Death in CaSki and HeLa

Because KerraTM, KSTM, and MinozaTM at subtoxic concentration (≤CC50) could not reduce mRNA level of HPVE6 oncogene, the concentrations of these extracts were increased to evaluate a population of cell death by AO/EB. In order to compare the effect of KerraTM on cell death, KSTM and MinozaTM were used at the same concentration. KerraTM at 250 µg/mL had nearly an equal CC50 in 48 h and mostly increased the dying or dead CaSki cells, followed by KSTM and MinozaTM as shown in Table 1 and Figure 3. Only KerraTM showed an increase in dead cells in a dose-dependent manner. Interestingly, KerraTM $(53.59 \pm 2.87\%)$, KSTM (48.09 \pm 6.62%), and MinozaTM (15.41 \pm 1.64%) at 250 µg/mL promoted higher autophagy than dead cells in contrast to the control ($3.11 \pm 0.38\%$). When the concentration increased to 500 μ g/mL, the autophagic cells in KerraTM decreased while the dead cells were elevated, and was higher than the first one. Simultaneously, the 250 and 500 μ g/mL concentrations of KerraTM were more toxic to HeLa for 48 h at the CC50, significantly increasing the population of dying and dead cells compared to KSTM and MinozaTM (Table 1, Figure 3C,D). Similar to CaSki, KerraTM increased a population of dead cells in a dose-dependent manner in HeLa. However, KerraTM induced a percentage of late apoptotic cells in HeLa with 250 and 500 μ g/mL of 5.10 \pm 0.42% and 23.08 \pm 1.51%, respectively, which were higher than those of CaSki (250 and 500 μ g/mL of 2.03 \pm 0.85% and $0.72 \pm 0.25\%$, respectively). The population of secondary necrosis in treated CaSki (250 and 500 μ g/mL of 18.69 \pm 3.10% and 74.43 \pm 6.16%, respectively) was higher than that of HeLa (250 and 500 μ g/mL of 2.19 \pm 0.59% and 30.22 \pm 0.94%, respectively). These results demonstrated that HeLa was more susceptible to the KerraTM treatment than CaSki in promoting late apoptosis. These results indicate that KerraTM is a potential drug for promoting cancer cell death.

Figure 3. Cell morphology of KerraTM, KSTM, and MinozaTM-treated CaSki and HeLa stained with AO/EB. The morphology of each KerraTM, KSTM, and MinozaTM-treated CaSki (**A**) and HeLa (**C**) dual stained with AO/EB was imaged under a fluorescent microscope. Percentages of dying and dead cells in CaSki (**B**) and HeLa (**D**) were measured from the images taken under the microscope. The symbols *, ** and *** were denoted as the significant difference ($p \le 0.05, 0.01$ and 0.001, respectively).

4. Discussion

High-risk HPV subtypes, especially HPV-16 and HPV-18, are the most common cause of cervical cancer [2]. These two types of HPV cause 70% of invasive cervical cancers in the world [2]. Thus, CaSki (HPV-16-positive cervical cancer cells) and HeLa (HPV-18-positive cervical cancer cells) were selected to study the effect on antiviral oncogene expression.

The treatment of cervical cancer through chemotherapy and radiotherapy causes adverse side effects [6]. The HPV vaccination is highly effective in preventing cervical cancer, however, access to HPV vaccinations in low- and middle-income countries is still limited. The application of natural products, which are rich sources of anticancer substances, in cervical cancer treatment is a promising and alternative approaches for cervical cancer treatment [8,9].

Cytotoxicity studies of KerraTM, KSTM, and MinozaTM revealed that these extracts showed a low toxicity against Vero cells. Interestingly, KerraTM showed the highest suppression of cell viability in HPV-positive cervical cancer cells, followed by KSTM and MinozaTM in a dose- and time-dependent manner. Similar to cancerous cell lines, KerraTM caused the highest cytotoxicity in 293FT (Table 1). Additionally, KerraTM completely prevented HPV-16 infection in the pre-attachment step whereas KSTM effectively prevented viral infection in both the pre-attachment and adsorption steps (Figure 1A,B). Moreover, the study of the effect of KerraTM, KSTM, and MinozaTM on cell death demonstrated that HeLa was more susceptible to KerraTM than CaSki. KerraTM promoted late apoptosis in HeLa cells (Figure 3). Though the efficiency of KerraTM on the inhibition of HPV-16 infection was lower than that of KSTM (Figure 2), its effect was mostly on the growth suppression of cervical cancers in comparison with KSTM and MinozaTM. It can be proposed that KerraTM is a possible candidate for cervical cancer prevention and treatment. Notably, increased concentrations of these extracts need to be further investigated for cell viability suppression on HPV-positive cervical cancer cells.

KerraTM comprises of nine medicinal plants, in which some of their phytochemicals have been studied to have anti-inflammatory and anticancer properties [11]. These phytochemicals affect various signaling pathways, including anti-inflammation, cell proliferation, and apoptosis [8,10,37–42]. For example, the heartwood of *P. santalinus* L.f. contains various bioactive compounds, e.g., pterostilbene, which has been shown to be potent against cervical cancer. It inhibited the growths of HeLa and CaSki cells with IC₅₀ values of 32.67 and 14.83 µM, respectively. Pterostilbene induced cell-cycle arrest by increasing the expression levels of p53 and p21 and decreasing the expression levels of cyclin E1 and cyclin B1. In addition, it induced apoptosis through the activation of caspase-3 and caspase-9, production of reactive oxygen species (ROS), downregulation of the Bcl-2 and Bcl-XL anti-apoptotic proteins, as well as the inhibition of MMP-2 and MMP-9 expressions [38]. Coumarins and O-Naphthoquinones from the heartwood of Mansonia gagei J.R.Drumm. ex Prai., such as mansorin-A, mansorin-B, mansorin-C, mansorin II, mansorin-I, and mansonone-G have anti-cervical cancer activity with IC_{50} values against HeLa cells ranging between 0.74-18.8 µM [39]. Coumarin has been found to induce cell-cycle arrest and apoptosis in HeLa cells via a decrease in the expression of G0/G1-associated proteins and the Bcl-xL and Bcl-2 anti-apoptotic proteins, but it increases the expression of the pro-apoptotic protein Bax [37]. Coumarin also decreases the mitochondrial membrane potential, leading to the release of cytochrome c, and the activation of caspase-3 and apoptosis [39]. Momardin Ic, a saponin compound commonly found in the root of *M. cochinchinensis* (Lour.) Spreng [40], showed anti-cell proliferative activity in cervical cancer [41]. Several phytochemicals in *Citrus aurantifolia* (Christm.) Swingle such as limonoids, phenolic acids (gallic acid and ferulic acid), and flavones (hesperetin and naringenin) have been shown to be anti-cervical cancer agents through various pathways. [10,41,42]. Ferulic acid has been shown to inhibit HeLa and CaSki cell proliferation and invasion via under-expression of MMP-9 mRNA, induction of G0/G1 cell arrest, as well as the inhibition of autophagy [42]. For limonoids, though there is no evidence of anti-cervical cancer properties, it has been shown to inhibit colon, stomach, and breast cancers by inhibiting cell proliferation and caspase-mediated

apoptosis [10,42]. Hesperetin induces apoptosis through upregulations of caspases, p53, Bax, and Fas death receptors, while naringenin inhibits the growth of HeLa cells and induces apoptosis through the inhibition of the NF- κ B/COX-2/caspase-1 pathway. Naringenin also induces G1 cell-cycle arrest via induction of the p21WAF1 expression, which subsequently leads to a decrease in the levels of the cyclin D1/CDK4 and cyclin E-CDK2 complexes and cell growth [42]. C. quadrangulare Kurz is a rich source of alkaloids and triterpenes, but their anti-cervical cancer activity has not been studied yet. Combretin, a steroidal alkaloid isolated from the seeds of C. quadrangulare Kurz, showed anticancer activities against human hepatocarcinoma (Hep G2) ATCC HB-8065 and human Caucasian colon adenocarcinoma (Caco2) ATCC HTB-39 [43]. Combretic acid C, a triterpene isolated from the leaves of *C. quadrangulare* Kurz has strong cytotoxicity against the K562 cancer cell line with an IC₅₀ value of 9.7 μ M [44]. Combretastins A-1 and A-4 prodrugs from the related species of C. quadrangulare Kurz, C. caffrum, are currently investigated in Phase I human cancer clinical trials [45]. T. triandra (Colebr.) Diels extracts comprise of many bioactive compounds with anticancer properties, including p-coumaric, ferulic acid, sinapic acid, and phytol [46,47]. The methanolic extract from the leaves of *T. triandra* (Colebr.) Diels has been tested with HeLa cells and the IC₅₀ value of the cell viability was 0.41 mg/mL [47]. The chemical constituents in Tinospora crispa (L.) Hook. f. and Thomson have been studied extensively, and various chemicals such as crispenes C, D, F, and G showed cytotoxicity against STAT3-dependent MDA-MB 231 breast cancer cells [48]. Though anti-cervical cancer substances have not been investigated yet, the aqueous, methanol, and chloroform extracts of stems showed cytotoxicity against HeLa cells with IC50 values of 53.83 \pm 1.47, 52.5 ± 1.14 , and $46.13 \pm 2.81 \ \mu g/mL$, respectively [49]. The final medicinal plant component in KerraTM is *Dregea volubilis* (L.f.) Hook.f. It consists of several bioactive compounds, e.g., apigenin, isoorientin, luteolin, quercetin, rutin, β -sitosterol, kaempferol, et cetera [50]. The methanolic extract of its leaves showed a cytotoxic effect against HeLa cells with a 50% net killing value (CTC₅₀) of 210 μ g/mL [51].

Though the specific biochemical mechanisms or pharmacological activities underlying these effects in the current study are not yet thoroughly understood, the results of this current study suggested that KerraTM is potentially useful in cervical cancer prevention and treatment. To gain a better understanding of the effect of KerraTM on growth suppression of cervical cancers, its overall mechanisms such as anti-angiogenesis, anti-metastasis, or drug resistance will be further investigated. Moreover, to apply KerraTM in the treatment of cervical cancer, sufficient clinical studies are required to confirm its clinical safety and efficiency. Further investigations will be focused on its purification and pharmacokinetics, and identification of components for cervical cancer treatment are essential to achieve this goal.

In addition, the effect of a combination formula of KerraTM, KSTM, and MinozaTM is also needed to determine the appropriate proportion of these three extracts on HPV infection and cervical cancer. Preclinical and clinical studies of these formulas are also needed.

This current study provides a first foundation for the possible therapeutic impact of Thai herbal medicine on the growth suppression of cervical cancers. It is well known that complementary medicine is also extensively used among cancer patients worldwide [52]. In addition, several studies have indicated that herbal medicine is the most common form of complementary and alternative medicine (CAM) used by patients with cancer, with increasing use following a cancer diagnosis [53–61]. Some conventional treatments of cancer tend to have severe side effects, drug resistance, multiple recurrences, and metastases that cause considerable suffering to patients. Therefore, this current study reports novel traditional medicines with a high efficacy and low cytotoxicity towards normal cells. They can be utilized as a complementary medicine or adjuvant treatment to either help relieve some side effects of conventional cancer treatment or prevent and treat cancer, especially cervical cancer.

5. Conclusions

The anti-cervical activities of three Thai traditional medicines, namely KerraTM, KSTM, and MinozaTM (the trademarks of the products), were investigated. KerraTM, which was developed from the Tak-Ka-Si-La Scripture, efficiently suppressed the cell growth of HeLa and CaSki cells. KerraTM also significantly increased the percentage inhibition of HPV-16 pseudovirus infections in the pre-attachment step. KSTM and MinozaTM could also suppress cancer cell growth. KSTM efficiently inhibited viral infections in both the pre-attachment and adsorption steps. However, all extracts at subtoxic concentrations (40 μ g/mL and 120 µg/mL: <CC50) could not reduce the viral E6 mRNA expressions of HPV-16 and HPV-18. Cell death analysis revealed that KerraTM promoted secondary necrosis in CaSki cells and late apoptosis in HeLa cells. It increased the population of dead cells in a dosedependent manner in both cancer cells. KSTM and MinozaTM promoted autophagy over cell death. The effect of KerraTM was mostly growth suppression in comparison with KSTM and MinozaTM. KerraTM is a possible candidate for cervical cancer prevention and treatment. Further investigations on their pharmacokinetics as well as preclinical and clinical studies will be carried out to better understand their mechanisms and safety use in cervical cancer treatment.

Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/medicina59122169/s1, Figure S1: The criteria to distinguish cell morphology in acridine orange/ethidium bromide staining of CaSki and HeLa cells; Figure S2: Cytotoxic effects of KerraTM, MinozaTM, and KSTM.

Author Contributions: Conceptualization, K.C. (Kiattawee Choowongkomon), C.P., T.E., S.T. and J.C.; methodology, C.P., T.E. and J.C.; validation, C.P., T.E. and J.C.; formal analysis, K.C. (Kiattawee Choowongkomon), K.C. (Khuanjarat Choengpanya), C.P., T.E., S.T. and J.C.; investigation, C.P., T.E. and J.C.; resources, K.C. (Kiattawee Choowongkomon), C.P., T.E., S.T. and J.C.; data curation, K.C. (Kiattawee Choowongkomon), C.P., T.E., S.T. and J.C.; writing—original draft preparation, K.C. (Kiattawee Choowongkomon), C.P., T.E., J.C., K.C. (Khuanjarat Choengpanya) and P.S.; writing—review and editing, K.C. (Kiattawee Choowongkomon), K.C. (Khuanjarat Choengpanya) and P.S.; visualization, C.P., T.E. and J.C.; supervision, K.C. (Kiattawee Choowongkomon) and J.C.; project administration, K.C. (Kiattawee Choowongkomon); funding acquisition, K.C. (Kiattawee Choowongkomon). All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Kasetsart University Research and Development Institute (KURDI) Bangkok, Thailand, KURDI (FF(KU)51.67).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Upon reasonable request, the corresponding author is willing to provide the data and materials supporting the results of this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Rojanamatin, J.; Ukranun, W.; Supaattagorn, P.; Chiawiriyabunya, I.; Wongsena, M.; Chaiwerawattana, A.; Laowahutanont, P.; Chitapanarux, I.; Vatanasapt, P.; Greater, S.L.; et al. *Cancer in Thailand Volume X*, 2016–2018; Medical Record and Databased Cancer Unit: Bangkok, Thailand, 2021; pp. 47–49.
- Roa, J.C.; Garcia, P.; Gomez, J.; Fernández, W.; Gaete, F.; Espinoza, A.; Lepetic, A.; Suarez, E. HPV genotyping from invasive cervical cancer in Chile. *Int. J. Gynaecol. Obstet.* 2009, 105, 150–153. [CrossRef] [PubMed]
- 3. Cervical Cancer Can Be Prevented with the HPV Vaccine, Siriraj Piyamaharajkarun Hospital. Available online: https://www.siphhospital.com/th/news/article/share/476 (accessed on 1 October 2023).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J. Clin.* 2021, 71, 209–249. [CrossRef] [PubMed]
- 5. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J. Clin.* **2018**, *68*, 394–424. [CrossRef] [PubMed]

- 6. Movva, S.; Rodriguez, L.; Arias-Pulido, H.; Verschraegen, C. Novel chemotherapy approaches for cervical cancer. *Cancer* 2009, 115, 3166–3180. [CrossRef] [PubMed]
- Zhang, Q.Y.; Wang, F.X.; Jia, K.K.; Kong, L.D. Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front. Pharmacol. 2018, 9, 1253. [CrossRef]
- 8. Zhou, Z.-W.; Long, H.-Z.; Xu, S.-G.; Li, F.-J.; Cheng, Y.; Luo, H.-Y.; Gao, L.-C. Therapeutic effects of natural products on cervical cancer: Based on inflammatory pathways. *Front. Pharmacol.* **2022**, *13*, 899208. [CrossRef] [PubMed]
- Smith, J.A.; Gaikwad, A.A.; Mathew, L.; Rech, B.; Faro, J.P.; Lucci III, J.A.; Bai, Y.; Olsen, R.J.; Byrd, T.T. AHCC[®] supplementation to support immune function to clear persistent human papillomavirus infections. *Front. Oncol.* 2022, 12, 881902. [CrossRef] [PubMed]
- 10. Gyawali, R.; Kim, K.S. Anticancer Phytochemicals of Citrus Fruits—A Review. J. Anim. Res. 2014, 4, 85–95. [CrossRef]
- 11. Siriwaseree, J.; Yingchutrakul, Y.; Samutrtai, P.; Aonbangkhen, C.; Srathong, P.; Krobthong, S.; Choowongkomon, K. Exploring the apoptotic-induced biochemical mechanism of traditional Thai herb (Kerra[™]) extract in HCT116 cells using a label-free proteomics approach. *Medicina* **2023**, *59*, 1376. [CrossRef]
- 12. Seetaha, S.; Khamplong, P.; Wanaragthai, P.; Aiebchun, T.; Ratanabunyong, S.; Krobthong, S.; Yingchutrakul, Y.; Rattanasrisomporn, J.; Choowongkomon, K. KERRA, mixed medicinal plant extracts, inhibits SARS-CoV-2 targets enzymes and feline coronavirus. *Covid* **2022**, *2*, 621–632. [CrossRef]
- 13. Hossain, E.; Chakroborty, S.; Milan, A.; Chattopadhyay, P.; Mandal, S.C.; Gupta, J.K. In vitro and in vivo antitumor activity of a methanol extract of *Dregea volubilis* leaves with its antioxidant effect. *Pharm. Biol.* **2012**, *50*, 338–343. [CrossRef] [PubMed]
- 14. Akhouri, V.; Kumar, A.; Kumari, M. Antitumour property of *Pterocarpus santalinus* Seeds against DMBA-induced breast cancer in rats. *Breast Cancer* 2020, *14*, 1178223420951193. [PubMed]
- 15. Santha, S.; Dwivedi, C. Anticancer Effects of Sandalwood (Santalum album). Anticancer Res. 2015, 35, 3137–3145. [PubMed]
- 16. Wimalasiri, D.; Dekiwadia, C.; Fong, S.Y.; Piva, T.J.; Huynh, T. Anticancer activity of *Momordica cochinchinensis* (red gac) aril and the impact of varietal diversity. *BMC Complement. Med. Ther.* **2020**, *20*, 365. [CrossRef] [PubMed]
- 17. Narang, N.; Jiraungkoorskul, W. Anticancer Activity of Key Lime, *Citrus aurantifolia*. *Pharmacogn. Rev.* **2016**, *10*, 118–122. [PubMed]
- Srivastava, K.C.; Mustafa, T. Ginger (*Zingiber officinale*) and rheumatic disorders. *Med. Hypotheses.* 1989, 29, 25–28. [CrossRef] [PubMed]
- 19. Mishra, R.K.; Kumar, A.; Kumar, A. Pharmacological activity of Zingiber officinale. Int. J. Pharm. Chem. Sci. 2012, 1, 1073–1078.
- 20. Laupattarakasem, P.; Sripa, B.; Hahnvajanawong, C. Effect of *Mallotus repandus* on Vascular Endothelial and Cholangiocarcinoma Cells Migration. *Srinagarind Med. J.* 2012, 25, 201–207.
- Ito, C.; Matsui, T.; Miyabe, K.; Hasan, C.; Rashid, M.; Tokuda, H.; Itoigawa, M. Three isoflavones from *Derris scandens* (Roxb.) Benth and their cancer chemopreventive activity and in vitro antiproliferative effects. *Phytochemistry* 2020, 175, 112376. [CrossRef]
- 22. Che Sulaiman, I.S.; Mohamad, A.; Ahmed, O.H. *Murdannia loriformis*: A Review of Ethnomedicinal Uses, Phytochemistry, Pharmacology, Contemporary Application, and Toxicology. *Evid.-Based Complement. Altern. Med.* **2021**, *5*, 9976202. [CrossRef]
- Jiratchariyakul, W.; Moongkarndi, P.; Okabe, H.; Frahm, A.W. Investigation of anticancer components from *Murdannia loriformis* (hassk.) Rolla Rao et Kammathy. *Thai J. Pharmacol.* 1998, 5, 10–20.
- Yam, M.F.; Ang, L.F.; Lim, C.P.; Ameer, O.Z.; Salman, I.M.; Ahmad, M.; Mohammed, M.A.; Asmawi, M.Z.; Abdulkarim, M.F.; Abdullah, G.Z. Antioxidant and hepatoprotective effects of *Murdannia bracteata* methanol extract. *J. Acupunct. Meridian Stud.* 2010, 3, 197–202. [CrossRef] [PubMed]
- Ooi, K.L.; Loh, S.I.; Tan, M.L.; Muhammad, T.S.; Sulaiman, S.F. Growth inhibition of human liver carcinoma HepG2 cells and α-glucosidase inhibitory activity of *Murdannia bracteata* (C.B. Clarke) Kuntze ex J.K. Morton extracts. *J. Ethnopharmacol.* 2015, 162, 55–60. [CrossRef]
- Intiyot, Y.; Kinouchi, T.; Kataoka, K.; Arimochi, H.; Kuwahara, T.; Vinitketkumnuen, U.; Ohnishi, Y. Antimutagenicity of *Murdannia loriformis* in the Salmonella mutation assay and its inhibitory effects on azoxymethane-induced DNA methylation and aberrant crypt focus formation in male F344 rats. *J. Med. Investig.* 2002, 49, 25–34.
- Vinitketkumnuen, U.; Chewonarin, T.; Dhumtanom, P.; Lertprasertsuk, N.; Wild, C.P. Aflatoxin-albumin adduct formation after single and multiple doses of aflatoxin B1 in rats treated with Thai medicinal plants. *Mutat. Res.* 1999, 428, 345–351. [CrossRef] [PubMed]
- Jiratchariyakul, W.; Vongsakul, M.; Sunthornsuk, L.; Moongkarndi, P.; Narintorn, A.; Somanabandhu, A.; Okabe, H.; Frahm, A.W. Immunomodulatory effect and quantitation of a cytotoxic glycosphingolipid from *Murdannia loriformis*. J. Nat. Med. 2006, 60, 210–216. [CrossRef] [PubMed]
- 29. Li, X.; Chu, L.; Liu, S.; Zhang, W.; Lin, L.; Zheng, G. *Smilax china* L. flavonoid alleviates HFHS-induced inflammation by regulating the gut-liver axis in mice. *Phytomedicine* **2022**, *95*, 153728. [CrossRef]
- Tian, L.W.; Zhang, Z.; Long, H.L.; Zhang, Y.J. Steroidal Saponins from the Genus Smilax and Their Biological Activities. *Nat. Prod. Bioprospect.* 2017, 7, 283–298. [CrossRef]
- 31. Nian, H.; Xiong, H.; Zhong, F.; Teng, H.; Teng, H.; Chen, Y.; Yang, G. Anti-inflammatory and antiproliferative prenylated sulphur-containing amides from the leaves of *Glycosmis pentaphylla*. *Fitoterapia* **2020**, *146*, 104693. [CrossRef]
- 32. Shoja, M.H.; Reddy, N.D.; Nayak, P.G.; Biswas, S.; Srinivasan, K.K.; Rao, C.M. In vitro mechanistic and in vivo anti-tumor studies of *Glycosmis pentaphylla* (Retz.) DC against breast cancer. *J. Ethnopharmacol.* **2016**, *186*, 159–168. [CrossRef]

- 33. Sreejith, P.S.; Asha, V.V. Glycopentalone, a novel compound from *Glycosmis pentaphylla* (Retz.) Correa with potent antihepatocellular carcinoma activity. *J. Ethnopharmacol.* **2015**, *172*, 38–43. [CrossRef] [PubMed]
- Vijayakumar, S.; Krishnakumar, C.; Arulmozhi, P.; Mahadevan, S.; Parameswari, N. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of *Glycosmis pentaphylla* (Retz.) DC. *Microb. Pathog.* 2018, 116, 44–48. [CrossRef] [PubMed]
- Murugan, N.; Srinivasan, R.; Murugan, A.; Kim, M.; Natarajan, D. *Glycosmis pentaphylla* (Rutaceae): A Natural Candidate for the Isolation of Potential Bioactive Arborine and Skimmianine Compounds for Controlling Multidrug-Resistant *Staphylococcus aureus*. *Front. Public Health* 2020, *8*, 176. [CrossRef] [PubMed]
- Abd-Elhamid, R.A.; Nazmy, M.H.; Fathy, M. Targeting Apoptosis as a Therapeutic Approach in Cancer. *Minia J. Med. Res.* 2020, 31, 321–334. [CrossRef]
- Chuang, J.-Y.; Huang, Y.-F.; Lu, H.-F.; Ho, H.-C.; Yang, J.-S.; Li, T.-M.; Chang, N.-W.; Chuna, J.-G. Coumarin Induces Cell Cycle Arrest and Apoptosis in Human Cervical Cancer HeLa Cells through a Mitochondria- and Caspase-3 Dependent Mechanism and NF-κB Down-regulation. *In Vivo* 2007, *21*, 1003–1009. [PubMed]
- Shin, H.J.; Han, J.M.; Choi, Y.S.; Jung, H.J. Pterostilbene Suppresses both Cancer Cells and Cancer Stem-Like Cells in Cervical Cancer with Superior Bioavailability to Resveratrol. *Molecules* 2020, 25, 228. [CrossRef] [PubMed]
- 39. Baghdadi, M.A.; Al-Abbasi, F.A.; El-Halawany, A.M.; Aseeri, A.H.; Al-Abd, A.M. Anticancer Profiling for Coumarins and Related O-Naphthoquinones from *Mansonia gagei* against Solid Tumor Cells In Vitro. *Molecules* **2018**, *23*, 1020. [CrossRef]
- 40. Kawamura, N.; Watanabe, H.; Oshio, H. Saponins from roots of *Momordica cochinchinensis*. *Phytochemistry* **1998**, 27, 3585–3591. [CrossRef]
- 41. Shinde, P.L.; John, S.; Mishra, R. Understanding the Combined Effects of High Glucose Induced Hyper-Osmotic Stress and Oxygen Tension in the Progression of Tumourigenesis: From Mechanism to Anti-Cancer Therapeutics. *Cells* **2023**, *12*, 825.
- 42. Massa, S.; Pagliarello, R.; Paolini, F.; Venuti, A. Natural bioactives: Back to the future in the fight against human papillomavirus? A narrative review. J. Clin. Med. 2022, 11, 1465. [CrossRef]
- 43. Nantachit, K.; Roongjang, S. Anti-mycobacterium and Anti-cancer Activities of Combretin, an Isolated Steroidal Alkaloid from the Seeds of *Combretum quadrangulare* Kurz. J. Pharm. Pharmacol. **2016**, *4*, 88–98.
- 44. Vo, T.S.; Nguyen, H.H.; Nguyen, T.P.; Tran, T.M.; Bui, X.H.; Dinh, M.H.; Pham, N.K.; Sichaem, J.; Dang, V.S.; Nguyen, N.H.; et al. Cycloartanes from leaves of *Combretum quadrangulare* growing in Vietnam. *Nat. Prod. Res.* 2023, *37*, 2359–2366. [CrossRef] [PubMed]
- 45. Lippert III, J.W. The combretastins A-1 and A-4 prodrugs: A minireview. J. Anal. Pharm. Res. 2016, 3, 12–14. [CrossRef]
- 46. Samankul, A.; Senawong, G.; Utaiwat, S.; Prompipak, J.; Woranam, K.; Phaosiri, C.; Sripa, B.; Senawong, T. *Tiliacora triandra* Leaf Powder Ethanolic Extract in Combination with Cisplatin or Gemcitabine Synergistically Inhibits the Growth of Cholangiocarcinoma Cells In Vitro and in Nude Mouse Xenograft Models. *Medicina* 2023, 59, 1269. [CrossRef] [PubMed]
- 47. Chaveerach, A.; Lertsatitthanakorn, P.; Tanee, T.; Puangjit, N.; Patarapadungkit, N.; Sudmoon, R. Chemical Constituents, Antioxidant Property, Cytotoxicity and Genotoxicity of *Tiliacora Triandra*. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 722–729.
- Haque, E.; Bari, M.S.; Khandokar, L.; Anjum, J.; Jantan, I.; Seidel, V.; Haque, M.A. An updated and comprehensive review on the ethnomedicinal uses, phytochemistry, pharmacological activity and toxicological profile of *Tinospora crispa* (L.) Hook. f. & Thomson. *Phytochem. Rev.* 2023, 22, 211–273.
- 49. Ibahim, M.J.; Wan-Nor, I.W.M.Z.; Narimah, A.H.H.; Nurul, A.Z.; Siti-Nur, S.S.A.R.; Froemming, G.A. Anti-proliperative and antioxidant effects of *Tinospora crispa* (Batawali). *Biomed. Res.* **2011**, *22*, 57–62.
- Bhat, P.; Jayagoudar, S.; Ghane, S.G.; Hegde, H.V. Pharmacology and Phytochemical Profile of Wattakaka Volubilis (L.F.) Stapf: A Systematic Review. Plant Sci. Today 2023, 10, 19–26. [CrossRef]
- 51. Rani, S.U.; Chitra, M.; Anuradha, R.; Jainu, M. In vitro cytotoxicity effect of methanol extract of *Wattakaka volubilis* (leaf) against breast cancer cell line. *Int. J. Adv. Res.* 2016, *4*, 44–49.
- Jermini, M.; Dubois, J.; Rodondi, P.Y.; Zaman, K.; Buclin, T.; Csajka, C.; Orcurto, A.; Rothuizen, E.L. Complementary medicine use during cancer treatment and potential herb-drug interactions from a cross-sectional study in an academic centre. *Sci. Rep.* 2019, 9, 5078. [CrossRef]
- Yarney, J.; Donkor, A.; Opoku, S.Y.; Yarney, L.; Agyeman-Duah, I.; Abakah, A.C.; Asampong, E. Characteristics of users and implications for the use of complementary and alternative medicine in Ghanaian cancer patients undergoing radiotherapy and chemotherapy: A cross-sectional study. *BMC Complement. Altern. Med.* 2013, *13*, 2–9. [CrossRef] [PubMed]
- 54. Yalcin, S.; Hurmuz, P.; McQuinn, L.; Naing, A. Prevalence of complementary medicine use in patients with cancer: A Turkish comprehensive cancer center experience. *J. Glob. Oncol.* **2018**, *4*, 1–6. [CrossRef] [PubMed]
- 55. Oyunchimeg, B.; Hwang, J.H.; Ahmed, M.; Choi, S.; Han, D. Complementary and alternative medicine use among patients with cancer in Mongolia: A National hospital survey. *BMC Complement. Altern. Med.* **2017**, *17*, 58. [CrossRef] [PubMed]
- Tas, F.; Ustuner, Z.; Can, G.; Eralp, Y.; Camlica, H.; Basaran, M.; Karagol, H.; Sakar, B.; Disci, R.; Topuz, E. The prevalence and determinants of the use of complementary and alternative medicine in adult Turkish cancer patients. *Acta Oncol.* 2005, 44, 161–167. [CrossRef] [PubMed]
- 57. Cilingir, D.; Gursoy, A.; Hintistan, A.P.S.; Nural, N. Complementary and alternative medicine use in cancer patients in Northeastern Turkey. *PONTE Int. Sci. Res. J.* 2017, 73, 9. [CrossRef]

- Molassiotis, A.; Scott, J.A.; Kearney, N.; Pud, D.; Magri, M.; Selvekerova, S.; Bruyns, I.; Fernadez-Ortega, P.; Panteli, V.; Margulies, A.; et al. Complementary and alternative medicine use in breast cancer patients in Europe. *Support. Care Cancer* 2006, 14, 260–267. [CrossRef] [PubMed]
- 59. Lin, Y.H.; Chiu, J.H. Use of Chinese medicine by women with breast cancer: A nationwide cross-sectional study in Taiwan. *Complement. Ther. Med.* **2011**, *19*, 137–143. [CrossRef] [PubMed]
- Jang, A.; Kang, D.H.; Kim, D.U. Complementary and alternative medicine use and its association with emotional status and quality of life in patients with a solid tumor: A cross-sectional study. J. Altern. Complement. Med. 2017, 23, 362–369. [CrossRef]
- 61. Kucukoner, M.; Bilge, Z.; Isikdogan, A.; Kaplan, M.A.; Inal, A.; Urakci, Z. Complementary and alternative medicine usage in cancer patients in southeast of Turkey. *Afr. J. Tradit. Complement. Altern. Med.* **2012**, *10*, 21–25. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.